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Abstract
Monte Carlo simulations of the two-dimensional XY model are performed in
a square geometry with various boundary conditions (BC). Using conformal
mappings we deduce the exponent ησ (T ) of the order parameter correlation
function and its surface analogue η‖(T ) as a function of the temperature in the
critical (low-temperature) phase of the model. The temperature dependence
of both exponents is obtained numerically with a good accuracy up to the
Kosterlitz–Thouless transition temperature. The bulk exponent follows from
simulations of correlation functions with periodic boundary conditions or order
parameter profiles with open boundary conditions and with symmetry breaking
surface fields. At very low temperatures, ησ (T ) is found in pretty good
agreement with the linear temperature-dependence of Berezinskii’s spin-wave
approximation. We also show some evidence that there are no noticeable
logarithmic corrections to the behaviour of the order parameter density profile
at the Kosterlitz–Thouless (KT) transition temperature, while these corrections
exist for the correlation function. At the KT transition the value ησ (TKT) = 1/4
is accurately recovered. The exponent associated with the surface correlations
is similarly obtained after a slight modification of the boundary conditions:
the correlation function is computed with free BC, and the profile with mixed
fixed–free BC. It exhibits a monotonic behaviour with temperature, starting
linearly according to the spin-wave approximation and increasing up to a value
η‖(TKT) � 1/2 at the Kosterlitz–Thouless transition temperature. The thermal
exponent ηε(T ) is also computed and we give some evidence that it keeps a
constant value in agreement with the marginality condition of the temperature
field below the KT transition.
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1. Introduction

The two-dimensional classical XY model has a rich variety of applications in condensed matter
physics [1]. It describes of course magnetic films with planar anisotropy1, but also thin-film
superfluids or superconductors, or two-dimensional solids. In statistical physics, this model
was also extensively studied for fundamental reasons, as describing, for example, classical
Coulomb gas or fluctuating surfaces and the roughness transition. Although no exact solution
exists for this model, many of its essential properties are known from different approaches.

The model undergoes a standard temperature-driven paramagnetic to ferromagnetic phase
transition in d > 2, characterized, e.g., by a power-law divergence of the correlation length
near criticality,

ξ ∼ |t|−ν (1)

(see, e.g., [2]). In two dimensions, it exhibits a rather different behaviour, since long-range
order of spins with continuous symmetries (if there is no source of anisotropy in spin space) is
forbidden according to the Mermin–Wagner theorem [3, 4]. Indeed, there is no spontaneous
magnetization at finite temperature in two-dimensional systems having a continuous symmetry
group, for example XY or O(2) spin models, since order would otherwise be destroyed
by spin-wave excitations [5]. On the other hand, there is an infinite susceptibility at low
temperatures, indicating another type of transition [6]. Such systems can indeed display a
low-temperature phase with quasi-long-range order and a defect-mediated transition towards
the usual paramagnetic phase at high temperatures. This transition is governed by unbinding
of topological defects.

We now specify the case of the 2d XY model: consider a square lattice with two-
component spin variables σw = (cos θw, sin θw), |σw|2 = 1, located at the sites w of a
lattice � of linear extent L, and interacting through the usual nearest-neighbour ferromagnetic
interaction

− H

kBT
= K

∑
w

∑
µ

σw · σw+µ̂

= K
∑
w

∑
µ

cos(θw − θw+µ̂) (2)

where K = J/kBT , with J the ferromagnetic coupling strength and µ = 1, 2 labels the
directions in � (µ̂ is the corresponding unit vector). The angle θw measures the deviation of
σw from an arbitrary reference direction.

The low-temperature regime, governed by spin-wave excitations, was investigated by
Berezinskii [5] in the harmonic approximation. In the low-temperature limit (also called
spin-wave phase), localized non-linear excitations (called vortices) are indeed bounded in
pairs of zero vorticity, and thus do not affect crucially the spin-wave description. At a
first approximation, the effect of vortices can be completely neglected and the spin-wave
approximation, after expanding the cosine, reproduces the main features of the low-temperature
physics. This harmonic approximation is justified, provided that the spin disorientation
remains small, i.e. at sufficiently low temperature:

− H

kBT
� − H0

kBT
− 1

2
K

∑
w

∑
µ

(θw − θw+µ̂)2. (3)

Within this approximation, the quadratic energy corresponds to a Gaussian equilibrium
distribution and the two-point correlation function at inverse temperature β becomes [7–10]
1 2d XY-type singularities are extremely hard to observe experimentally in real magnetic layers, since they are washed
out by crossover effects as soon as a small interlayer interaction takes place in the system.
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Zβ =
(∏

w

∫
dθw

2π

)∏
w,µ

exp

[
−1

2
K(θw − θw+µ̂)2

]
(4)

〈
σw1 · σw2

〉 � Z−1
β

∏
w

∫
dθw

2π
cos

(
θw1 − θw2

) × exp

(
−1

2
K

∑
w

∑
µ

(θw − θw+µ̂)2

)

� exp

((
−1

2
Z−1

β

∏
w

∫
dθw

2π

(
θw1 − θw2

)2

)
× exp

(
−1

2
K

∑
w

∑
µ

(θw− θw+µ̂)2

))

� |w1 − w2|−1/2πK (5)

hence

ηSW
σ (T ) = 1

2πK
= kBT

2πJ
. (6)

When the temperature increases, the bounded vortices appear in increasing number.
Their influence becomes more prominent, producing a deviation from the linear spin-
wave contribution in equation (6), but the order parameter correlation function still decays
algebraically with an exponent ησ (T ) which depends on the temperature. The transition
eventually takes place at a temperature TKT (usually called Berezinskii–Kosterlitz–Thouless
critical temperature) when the pairs dissociate, thereby destroying short-range order in the
system. The mechanism of unbinding of vortices was studied by Kosterlitz and Thouless
[11–13] using approximate renormalization group methods. Above TKT (in the vortex phase),
the correlation function recovers the usual exponential decay. This very peculiar topological
transition is characterized by essential singularities when approaching the critical point from
the high-temperature phase, t = T − TKT → 0+,

ξ ∼ ebξ t
−σ

(7)

χ ∼ ebχ t−σ ∼ ξ2−ησ (8)

whence ησ ≡ ησ (TKT) = 2 − bχ/bξ . For reviews, see e.g. [1, 14–17].
The existence of a scale-invariant power-law decay of the correlation function implies

that at each value of the temperature there corresponds a fixed point, or equivalently that there
is a continuous line of fixed points at low temperatures. The temperature is thus a marginal
field in the spin-wave phase which becomes relevant in the vortex phase.

Not much is known in the intermediate regime between the spin-wave approximation at
low temperature and the Kosterlitz–Thouless results at the topological transition and in fact the
precise determination of the critical behaviour of the two-dimensional XY model in the critical
phase remains a challenging problem. Most of the studies were dedicated to the determination
of critical properties at TKT.2 Many results were obtained using Monte Carlo simulations (see,
e.g., [18–29]) at TKT and slightly above, or high-temperature series expansions [30, 31], but
the analysis was made difficult by the existence of logarithmic corrections, e.g.

χ ∼ ξ2−ησ (ln ξ)2θ

[
1 + O

(
ln ln ξ

ln ξ

)]
(9)

in the high-temperature regime, or〈
σw1 · σw2

〉 � (ln |w1 − w2|)2θ

|w1 − w2|ησ

[
1 + O

(
ln ln |w1 − w2|
ln |w1 − w2|

)]
(10)

2 When approaching the transition from above, the value of TKT is often obtained by fixing σ = 1/2 in equation (7),
and ησ (TKT) then follows from a fit of the susceptibility to equation (8).
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at TKT exactly [15, 32, 33], with a probable value of θ = 1
16 [34]. Due to these logarithmic

corrections which make the fits quite difficult to achieve safely, the values of TKT and ησ (TKT)

were a bit controversial as shown in table 1 of [29]. Resorting to large-scale simulations was
then needed in order to confirm this picture [28]. Although essentially dedicated to the KT
point, some of these papers also report the value of ησ (T ) computed from the correlation
function decay at several temperatures in the critical phase [18, 21–23], while a systematic
study of the helicity modulus at low temperature previously led more directly to the same
information [35].

Recently, we proposed a rather different approach [36, 37] which only requires a moderate
computation effort. Assuming that the low-temperature phase exhibits all the characteristics
of a critical phase with conformal invariance [38] (invariance under rotation, translation and
scale transformations, short-range interactions, isotropic scaling), we use the covariance law of
n-point correlation functions under the mapping of a two-dimensional system confined inside
a square onto the infinite or half-infinite plane. The scaling dimensions are then obtained
through a simple power-law fit where the shape effects are encoded in the conformal mapping,
via the definition of a rescaled distance variable adapted to the description of the confined
geometry.

This technique is well known since the appearance of conformal invariance. Conformal
mappings have been extensively used, mainly in the case of Ising or Potts models, in order
to investigate the critical properties in restricted geometries. Density profiles or correlations
have been investigated in various confined systems (surfaces [39, 40], corners [41, 42], strips
[43–46], squares [47, 48] or parabolic shapes [49–51]: for a review, see [52]). The exact
expressions of the two-point correlation functions have also been calculated on the torus for
the pure Ising case [53], and large-scale Monte Carlo simulations of the 2d Ising model have
been shown to reproduce the correct behaviour, including corrections due to the finite size of
the lattice [54, 55].

In this paper, we report a systematic application of conformal mappings to the investigation
of critical properties of the 2d XY model in the spin-wave phase. The physical quantities are
obtained using Monte Carlo simulations in square-shaped confined systems. We may then
determine accurately the correlation function exponent ησ (T ) in the low-temperature phase
T � TKT [36], but also, by choosing convenient boundary conditions (BC), the surface critical
exponent which describes the decay of the correlation function parallel to a free surface, η‖(T )

[37]. The thermal exponent ηε will also be considered. Section 2 presents the expected
functional expressions of correlation functions and density profiles with various BC, and use
of these expressions is systematically reported in section 3. It is worth noting already that the
results following the analysis of the two-point correlation functions are not fully convincing,
but the main conclusions are then supported by the most refined investigations of the density
profiles. A discussion of the results is given in the last section.

2. Functional expressions of correlation functions and density profiles in a
square-shaped critical system

2.1. Preliminary and notation

In the following, we shall specify two different types of geometries, depending on our purpose.
They are related through a conformal transformation. The critical properties in the first system
will be reached through the study of the confined system in the second one.

(i) The infinite plane

z = x + iy −∞ < Re z < +∞ −∞ < Im z < +∞ (11)
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or the upper half-plane

z = x + iy −∞ < Re z < +∞ y = Im z � 0. (12)

This is the system which is eventually interesting in the thermodynamic limit. It is
of course not directly accessible using numerical techniques. In the second case, the
existence of a free surface materialized here by the real axis will allow us to define both
bulk and surface quantities.

(ii) The square

w = u + iv −L/2 � Re w � L/2 0 � Im w � L. (13)

This is the natural geometry for Monte Carlo simulations. The boundary conditions
may be open at the edges (square) or periodic (torus). In the following, we will obtain
numerical results in the square or the torus, and our aim will be to translate them into their
half-infinite or infinite system counterpart3.

It is worth referring also to the infinitely long strip of width L, k+il,−∞ < k < +∞, 0 �
l � L: this geometry is incidentally mentioned here because the choice of the boundary
conditions is more obvious there than in the square system. Although no computation will be
performed in this geometry, we will refer to it when introducing the profiles. It is particularly
interesting, since many results concern such strips, e.g. when obtained with transfer matrices
[56] or quantum chains [57] which correspond to the Hamiltonian limit of classical systems
confined in strips. In the transverse direction (l-coordinate), the boundary conditions may
be open (strip) or periodic (cylinder). A very accurate numerical study of the O(n) model
(including XY ) using the transfer matrix of a related loop gas model was, for example, reported
by Blöte and Nienhuis [56]. The periodic strip is obtained from the plane through the standard
logarithmic mapping k + il = L

2π
ln z which implies an asymptotic exponential decay for the

correlation functions along the strip at criticality,〈
σk1+ilσk2+il

〉
PBC

∼ exp(−2πxσ |k1 − k2|/L). (14)

The scaling dimensions are thus determined by the universal correlation length amplitudes,
ξ−1
σ = 2πxσ/L, which are given, in the transfer matrix formalism, by the two leading

eigenvalues of the transfer matrix ξ−1
σ = ln(�0/�1). Blöte and Nienhuis obtained the

most precise values of the thermal and magnetic scaling dimensions at the KT transition,
xε = 1

2ηε = 2.000 000 (2) and xσ = 1
2ησ = 0.125 000 (1). In the following, we will exploit

expressions similar to equation (14), transposed in the square geometry. We mention here
that our approach proceeds from Monte Carlo simulations and cannot pretend to an accuracy
comparable to the results of Blöte and Nienhuis.

2.2. Conformal rescaling of the correlation functions

In an infinite system at criticality, the correlation function is known to behave asymptotically
as 〈

σz1 · σz2

〉 ∼ |z1 − z2|−ησ . (15)

This defines the bulk correlation function exponent ησ . The surface critical properties are also
interesting and extra universal critical exponents can be measured from simulations performed
in finite systems with open boundary conditions. In the semi-infinite geometry z = x + iy
3 Here and in the following, z will constantly refer to a complex coordinate in the plane, while w will refer to
the complex coordinate in the square geometry. In the plane, UHP specifies the upper half-plane. In the square,
PBC, fBC, FBC and FfBC mean that the boundary conditions are respectively periodic, free, fixed, or mixed fixed–free
according to a description which will be given later.
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(the free surface being defined by the x-axis), the two-point correlation function is fixed up
to an unknown scaling function. Fixing one point z1 close to the free surface (z1 = i) of the
upper half-plane (UHP), and leaving the second point z2 to explore the rest of the geometry,
the following behaviour is expected:〈

σz1 · σz2

〉
UHP

∼ (y1y2)
−xσ ψ(ω) (16)

with ησ = 2xσ . The dependence on

ω = y1y2

|z1 − z2|2 (17)

of the universal scaling function ψ is constrained by the special conformal transformation
[39, 40], and its asymptotic behaviour is implied by scaling, e.g. ψ(ω) ∼ ωx1

σ when y2 � 1,
with x1

σ = 1
2η‖ the magnetic surface scaling dimension.

In a square system, the order parameter correlation function
〈
σw1 ·σw2

〉
is strongly affected

by boundary and shape effects and thus deviates significantly from the thermodynamic limit
expressions (15) and (16). It should obey a scaling form which reproduces the expected
power-law behaviour, for example,〈

σw1 · σw2

〉 = |w1 − w2|−ησ fsq(w1/L,w2/L) (18)

where the function fsq encodes shape effects in a very complicated manner which also depends
on the boundary conditions so that the connection between equations (15) or (16) and (18) is
not obvious. Conformal invariance provides an efficient technique to avoid these shape effects,
or at least, enable us to include explicitly the shape dependence in the functional expression
of the correlators through the conformal covariance transformation under a mapping w(z):〈

σw1 · σw2

〉 = |w′(z1)|−xσ |w′(z2)|−xσ
〈
σz1 · σz2

〉
. (19)

Conformal invariance holds in isotropic systems with short-range interactions which exhibit
translation, rotation, as well as scale invariance. Usually, these conditions are so restrictive
that they can only be valid at the critical point, and we assume here that the general covariance
equation (19) holds in the whole T < TKT phase.

In order to get a functional expression of the correlation function inside the square
geometry w, one simply has to use the convenient mapping w(z):

(i) Conformal mapping of the plane onto the torus: in the continuum limit, the correlation
function of the Ising model on the torus is exactly known [40, 53, 58]

〈
σw1 · σw2

〉
PBC

∼
Ising

[
4∑

ν=2

|θν(0)|
]−1 4∑

ν=1

∣∣∣θν

(w12

2L

)∣∣∣ ×
∣∣∣θ ′

1(0)/θ1

(w12

L

)∣∣∣1/4
(20)

(ησ = 1/4) where θν(α) are the Jacobi theta functions and w12 = w1 − w2. A similar
expression exists for the energy–energy correlations [40]. It can be generalized to a
critical system characterized by any correlation function exponent ησ . For simplicity, we
fix in the following one point (w1) as the origin, and the second point is simply written as
w. The dependence on the relative distance w in the above expression,

〈σ0 · σw〉PBC ∼
4∑

ν=1

|θν(w/2L)| × |θ1(w/L)|−1/4 (21)

is compatible with the general covariance equation (19), rewritten as

〈σ0 · σw〉PBC ∼ |w′(z)|−ησ /2[z(w)]−ησ (22)
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Figure 1. Correlation functions in the plane (left) and in the square (PBC) geometries (right).

provided that |z(0)| � |z(w)| (large-distance behaviour). The rhs is a function of w

hereafter denoted by [ζ(w)]−ησ , with ησ = 1/4 and the rescaled distance is

ζ(w) = |θ1 (w/L)| ×
(

4∑
ν=1

|θν (w/2L)|
)−4

. (23)

Therefore equation (20) can be generalized to any correlation function of a critical system
inside a torus,

〈σ0 · σw〉PBC ∼ [ζ(w)]−ησ . (24)

A sketch of the correlation functions in the plane and in the square geometries is shown
in figure 1.

(ii) Conformal rescaling of the upper half-plane inside a square: the conformal
transformation of the half-plane z = x + iy (0 � y < ∞) inside a square w = u + iv of
size L × L (−L/2 � u � L/2, 0 � v � L) with open boundary conditions along the
four edges is realized by a Schwarz–Christoffel transformation [59]

w(z) = L

2K
F(z, k) z = sn

(
2Kw

L

)
. (25)

Here, F(z, k) is the elliptic integral of the first kind,

F(z, k) =
∫ z

0
[(1 − t2)(1 − k2t2)]−1/2 dt (26)

sn(2Kw/L) the Jacobian elliptic sine, K = K(k) = F(1, k) the complete elliptic integral
of the first kind and the modulus k depends on the aspect ratio of � and is here the solution
of K(k)/K(

√
1 − k2) = 1

2 :

k = 4

( ∑∞
p=0 q(p+1/2)2

1 + 2
∑∞

p=1 qp2

)2

� 0.171 573 q = e−2π . (27)

Using mapping (25), one obtains the local rescaling factor in equation (19), w′(z) =
L

2K [(1 − z2)(1 − k2z2)]−1/2, and inside the square, keeping w1 ∼ O(1) fixed, the two-
point correlation function becomes (see, e.g., [60])

〈σ0 · σw〉fBC ∼ [κ(w)]−
1
2 ησ ψ(ω)

κ(w) = Im

[
sn

2Kw

L

]
×

∣∣∣∣
(

1 − sn2 2Kw

L

) (
1 − k2sn2 2Kw

L

)∣∣∣∣
−1/2

(28)

provided that y(0) � y(w) and where fBC specifies that the open square has free boundary
conditions. This expression is correct up to a constant amplitude determined by κ(w1)
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Figure 2. Correlation functions in the upper half-plane (left) and in the square (fBC) geometries
(right).

which is kept fixed, but the function ψ(ω) is still varying with the location of the second
point, w.
A sketch of the correlation functions in the plane and square geometries is shown in
figure 2.

2.3. Density profiles in restricted geometries

In order to cancel the role of the unknown scaling function in the half-plane geometry in
equation (28), it is more convenient to work with a density profile m(w) in the presence of
symmetry breaking surface fields h∂� on the boundary ∂� of the lattice �. This is a one-point
correlator which scales in the half-infinite geometry as

m(z) = 〈σz · h∂�(z)〉UHP = const × y−xσ (29)

and it maps onto (see figure 3)

mFBC(w) = 〈σw · h∂�(w)〉FBC = const × [κ(w)]−
1
2 ησ (30)

where the function κ(w) defined in equation (28) again comes from the mapping and FBC

means that the open square has fixed boundary conditions (figure 3).
Equation (29) is a special case of conformally invariant profiles predicted, e.g., by

Burkhardt and Xue [44, 45] in strip geometries k + il or in their half-infinite counterpart
z = x + iy:

mab(z) = y−xσ Fab(cos θ). (31)

The scaling function Fab(x) depends on the universality class and on the boundary conditions
denoted by a and b [61]. This notation is reminiscent of the strip geometry where a and b
specify the two boundaries of the strip at l = 0 and l = L, respectively. In the case of fixed
BC (denoted by FBC in the square and FF in the strip) corresponding to equations (29) and
(30), one gets

mFBC(z) = y−ησ /2 (32)

while in the case of fixed–free BC (FfBC in the square or more naturally Ff in the strip)4

Burkhardt and Xue have shown in the case of Ising and Potts models that

mFfBC(z) = y−ησ /2( cos 1
2θ

)η‖/2
. (33)

4 The spins located on the x > 0 half-axis (l = 0 strip surface) are kept fixed while those of the x < 0 half-axis
(l = L strip surface) are free.
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Figure 3. Order parameter profile in the plane (left) and in the square geometries (right) with fixed
BC (top) and mixed fixed–free BC (bottom).

This expression has since then mainly been used in the strip geometry [62]5. In the square
geometry, the fixed–free BC correspond to keeping the spins fixed for u > 0, and the profile
is expected to obey the following ansatz [37] (figure 3):

mFfBC(w) ∼ const × [κ(w)]−
1
2 ησ [µ(w)]

1
2 η‖

(34)

µ(w) = 1√
2

(
1 + Re

[
sn

2Kw

L

]
×

∣∣∣∣sn
2Kw

L

∣∣∣∣
−1

)1/2

.

In this paper we will essentially apply equations (24), (28), (30) and (34) in order to
determine ησ and η‖.

3. Monte Carlo simulations

3.1. Description of the algorithm

Simulations of 2d XY spins are performed using Wolff’s cluster Monte Carlo algorithm [63].
The boundary conditions may be periodic, free or fixed. When the boundaries are left periodic
or free, there is no particular problem, but a relatively precise numerical determination of
the order parameter profile of the 2d XY model confined inside a square with fixed boundary
conditions (playing the role of ordering surface fields h∂�(w)) introduces a priori a technical
difficulty which is easily circumvented. In practice, the symmetry is broken by keeping the
boundary spins located along the four edges of the square fixed, e.g. σw = (1, 0),∀w ∈ ∂�

during the Monte Carlo simulation. The Wolff algorithm should thus become less efficient,
since close to criticality the unique cluster will often reach the boundary and no update would
be made in this case. To prevent this, we use the symmetry of the Hamiltonian (2) under a

5 Considering a semi-infinite system described by z = x + iy = Reiθ , y � 0, ordinary scaling implies a functional
form in the half-plane, m(z) = y−xσ Fab(x/R). Under the logarithmic transformation into a strip of width L,
L
π

ln z = k + il, one obtains the order parameter profile as m(l) = [ L
π

sin(π l
L

)]−xσ Fab(
πl
L

).
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global rotation of all the spins. Even when the cluster reaches the fixed boundaries ∂�(w), it
is updated, and the order parameter profile is then measured with respect to the common new
direction of the boundary spins, mFBC(w) = 〈σw · σ∂�(w)〉FBC. The new configuration reached
would thus correspond—after a global rotation of all the spins of the system to re-align the
boundary spins in their original (1, 0) direction—to a new configuration of equal total energy
and thus the same statistical weight as the one actually produced.

In the literature, many papers were dedicated to the study of the characteristic properties of
the Kosterlitz–Thouless transition. The value of TKT will be considered as known with a good
accuracy6. We will take here the value reported by Gupta and Baillie [23], or Campostrini
et al [34], kBTKT/J = 0.893(1).

3.2. Behaviour of the correlation functions

3.2.1. Scaling of 〈σ0 ·σw〉PBC. Simulations are performed on a square with periodic boundary
conditions. Here we choose systems of size L = 100. After thermalization (106 iterations)
and computation (106 other iterations), we get the spin orientations {θw} at all the lattice sites.
The correlation function is defined as

〈σ0 · σw〉PBC = 〈cos(θ0 − θw)〉PBC (35)

where 0 is an arbitrary reference site (e.g. a corner in figure 1).
It has to be fitted to equation (24) with ζ(w) given by equation (23). Expansions of the

θ -functions can be found in the literature, e.g. in Abramowitz and Stegun [64],

θ1(w/L) = 2e−π/4
∞∑

n=0

(−1)n e−n(n+1)π sin

[
(2n + 1)πw

L

]
(36)

and similar expressions for θ2, θ3 and θ4. Here the fact that the system is inside a square (not
a rectangle L × L′) has been taken into account, therefore the expansion parameter e−πL′/L

reduces to q = e−π . Keeping only the leading terms, we obtain

θ1(w/L) = 2e−π/4(sin πw/L − e−2π sin 3πw/L + · · ·) (37)
4∑

ν=1

|θν(w/2L)| = 2(1 + e−π/4(sin πw/2L + cos πw/2L)

− e−9π/4(sin 3πw/2L − cos 3πw/2L) + · · ·). (38)

Using w = u + iv and defining the symbols

sc[u, v] = sin(πu/L) cosh(πv/L)

cs[u, v] = cos(πu/L) sinh(πv/L)
(39)

and similar expressions for ss[u, v] and cc[u, v] which enable a compact notation for
sin πw/L = sc[u, v] + i cs[u, v], the expression of ζ(w) in equation (23) is given in terms of
trigonometric functions:

|θ1(w/L)| = 2q[(sc[u, v] − q8 sc[3u, 3v])2 + (cs[u, v] − q8 cs[3u, 3v])2]1/2(
4∑

ν=1

|θν(w/2L)|
)2

= 2
[
1 + q

(
sc

[
u
2 , v

2

]
+ cc

[
u
2 , v

2

]) − q9 (
sc

[
3u
2 , 3v

2

] − cc
[

3u
2 , 3v

2

])]2

+ 2
[
1 + q

(
cs

[
u
2 , v

2

] − ss
[

u
2 , v

2

]) − q9
(
cs

[
3u
2 , 3v

2

]
+ ss

[
3u
2 , 3v

2

])]2
. (40)

6 The numerical value of the transition temperature has been deduced from different approaches, e.g. high-temperature
series expansions (e.g. in [31]), temperature dependence of the correlation length (e.g. in [23]), zeros of the partition
function (e.g. in [29]), jump in the helicity modulus (e.g. in [20]), . . . and the recent estimations are compatible with
each other.
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Figure 4. Log–log plot of the order parameter correlation function in a square system with periodic
boundary conditions versus the rescaled variable ζ(w). The data correspond to a quarter of the
lattice �, for 0 < u � L/2 and 0 < v � L/2, L = 100. Four different temperatures in the
spin-wave phase are shown (kBT /J = 0.1, 0.3, 0.5 and 0.7 from top to bottom), and at the KT
transition temperature.

It is instructive to recover the cylinder limit from the torus geometry. For a square of arbitrary
aspect ratio L′/L, the expansion parameter q in the previous series expansions has to be
replaced by e−πL′/L, and the larger the aspect ratio, the faster the series converges. Let us
consider the limit L′ → ∞, L fixed. Keeping only the leading terms and omitting unimportant
prefactors, we have

|θ1(w/L)| ∼
L′/L→∞

|sc2[u, v] + cs2[u, v]|1/2 (41)

hence from ζ(w) ∼ |θ1(w/L)| the traditional expression [66] follows

〈σ0 · σw〉PBC ∼
[

cosh

(
2πv

L

)
− cos

(
2πu

L

)]− 1
2 ησ

(42)

which leads to equation (14) in the limit v/L � 1.7

We can then plot the correlation function data directly versus the rescaled variable ζ(w)

on a log–log scale, as shown in figure 4. On this scale, a linear behaviour would indicate a
power-law decay. A deviation from the straight line can be observed at large values of ζ(w)

where the data are scattered. The quality of the data is unfortunately not improved by a better
statistics (ten times more iterations). This correction is more pronounced as the KT point is
approached where one knows that logarithmic corrections are present. From this figure, it is
clearly difficult to get a reliable estimation of the exponents, but we nevertheless performed
a fit in the range ζ(w) < 4 × 10−4 where the behaviour is closer to a pure power law8.
7 In the standard notation, the roles of u and v are reversed, because we have considered here the infinite direction
of the cylinder in the imaginary direction.
8 This range does not correspond to the right limit for an investigation of the asymptotic behaviour of the correlation
function (especially when logarithmic corrections may be involved), since the limit |z| → ∞ in the plane corresponds
to ζ(w) → ∞.
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Table 1. Values of the exponents of the bulk and surface correlation function in the spin-wave phase
of the 2d XY model. They are obtained after fitting the density profiles or correlation functions
to the conformal functional expressions for a system of size L = 100. We have checked that
the results are already very stable at such a size. We mention that determinations a, b and c are
completely independent for the bulk exponent, and that determinations d and e for the surface
exponent are also independent. For determination e, the value of the bulk exponent in a is used as
input. The most reliable results are printed in bold font.

Correlation function exponents

ησ η‖

T a b c SWa d e SW

0.1 0.017 0.017(2) 0.017(1) 0.016 0.032(1) 0.031 0.032
0.2 0.037 0.035(4) 0.036(3) 0.032 0.069(1) 0.064 0.064
0.3 0.057 0.052(7) 0.052(5) 0.048 0.103(2) 0.100 0.095
0.4 0.077 0.073(9) 0.074(6) 0.064 0.143(4) 0.140 0.127
0.5 0.103 0.096(11) 0.100(8) – 0.186(5) 0.181 –
0.6 0.127 0.122(14) 0.122(13) – 0.231(8) 0.228 –
0.7 0.154 0.153(18) 0.155(14) – 0.298(12) 0.294 –
0.8 0.194 0.188(22) 0.187(29) – 0.374(17) 0.366 –
0.893 0.249 0.250(28) 0.250(34) – 0.542(22) 0.548 –

a Deduced from the fits of 〈σ0 ·σw〉PBC (L = 100), section 3.2.1.
b Deduced from the fits of mFBC(w), section 3.3.1.
c Deduced from the fits of mFfBC(w) (L = 100 or 200 at the KT point), section 3.3.2.
d Deduced from the fits of mFfBC(w) (L = 100 or 200 at the KT point), section 3.3.2.
e Deduced from the fits of 〈σw1 · σw〉fBC (L = 101), section 3.2.2.
a SW gives the result of the spin-wave contribution.

The straight lines reported there correspond to (power-law fits with) slopes ησ (T ) as given
in table 1. They match perfectly the correlation function data in the regime of small ζ(w),
therefore if they do not confirm nicely the expression in (24), they at least do not contradict
this equation. A stronger support to equation (24) is the fact that the values of the exponents
reported in table 1 are consistent with more refined estimates deduced from the fit of the order
parameter profile in section 3.3 (the reader can compare columns a and b in table 1 to convince
himself of the compatibility of the results).

3.2.2. Scaling of 〈σ0 · σw〉fBC. Simulations are then performed according to a similar
procedure, but now in an open square with free BC along the four edges. Equation (28) may
be used to estimate the surface exponent η‖(T ). Plotting the quantity〈

σw1 · σw

〉
fBC

× [κ(w)]
1
2 ησ (T ) = ψ(ω) (43)

as a function of the variable ω defined in equation (17), and given in terms of the w-coordinates
as follows:

ω = Im

[
sn

2Kw1

L

]
× Im

[
sn

2Kw

L

]
×

∣∣∣∣sn
2Kw1

L
− sn

2Kw

L

∣∣∣∣
−2

(44)

will give access to the universal function ψ(ω). Here, the values of ησ (T ) are taken from the
previous section (column a in table 1). As we already mentioned above, these are not our most
precise determinations of the bulk scaling dimensions, but the deviation from the forthcoming
results of the following section being small (see table 1), there is no dramatic consequence to
using them.
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Figure 5. Log–log plot of the universal scaling function ψ(ω) at the KT point and below. The
dashed lines represent a fit leading to the surface correlation function exponents (L = 101).

The function ψ(ω) is expected to behave as

ψ(ω) ∼
ω�1

ω
1
2 η‖(T ) (45)

and leads to a determination of the surface exponent as a function of the temperature. In the
case of the 2d Ising model for example, the scaling function was calculated analytically by
Cardy [39],

ψIsing(ω) =
√

(1 + 4ω)1/4 + (1 + 4ω)−1/4 ∼ ω1/2
(
1 − ω + 9

4ω2 + · · · ) (46)

in accordance with η
Ising
‖ = 1.

The rescaled space variables κ(w) and ω involve Jacobi elliptic sine. The series expansion
is the following,

sn
2Kw

L
= 2π

kK

∞∑
n=0

e−π(n+1/2)

1 − e−π(2n+1)
sin

[
(2n + 1)πw

L

]
(47)

and the plot of ψ(ω) is shown in figure 5 at several temperatures below and at the KT
transition. The surface scaling dimension 1

2η‖(T ) is deduced from a power-law fit at small
values of ω � 0.03 (dashed lines)9. At the Kosterlitz–Thouless transition, we can also fit the
scaling function for comparison with the Ising case. One obtains

ψKT(ω) ∼ ω0.274(1 − 0.401ω + 0.221ω2 + · · ·). (48)

3.3. Behaviour of the density profiles

3.3.1. Scaling of mfBC(w). Density profiles present the advantage of being one-point
functions. They are thus supposed to be determined more precisely numerically than two-
point correlation functions and should therefore lead to more refined estimations of the critical
9 This is the right limit this time, since |z| → ∞ corresponds to ω → 0.
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Figure 6. Monte Carlo simulations of the 2d XY model inside a square 48 × 48 spins with fixed
boundary conditions below the Kosterlitz–Thouless transition temperature. Typical configuration
on the left (where the fixed BC are easily observed by the common direction taken by all the border
spins) and average over 106 MCS/spin after cancellation of 106 for thermalization (cluster update
algorithm) on the right.

exponents. We start with simulations inside an open square with fixed boundary conditions
(FBC), according to the prescriptions given in the description of the algorithm. The order
parameter profile mFBC(w) is defined according to the definition of a reference orientation on
the fixed boundaries, i.e.

mFBC(w) = 〈σw · σ∂�(w)〉FBC

= 〈cos(θw − θ∂�(w))〉FBC. (49)

After averaging over the ‘production sweeps’, one gets a characteristic smooth profile as
shown in figure 6 which also presents a typical configuration with fixed BC.

A log–log plot of mFBC(w) with respect to the reduced variable κ(w) is shown in figure 7
at two different temperatures below TKT, roughly at TKT, and one temperature slightly above.
A first observation is the confirmation of the functional form of equation (30) in the whole
low-temperature phase. One indeed observes a very good data collapse of the L2 points onto a
single power-law master curve (a straight line on this scale). The next information is the rough
confirmation of the value of the critical temperature, since above TKT, the master curve is no
longer a straight line, indicating that the corresponding decay in the half-infinite geometry
differs from a power-law as it should in the high-temperature phase10. In [36], we have shown
how the computation of the χ2 per d.o.f. as a function of temperature is an indicator of the
location of the KT transition. The χ2 has a very small value, revealing the high quality of
the fit, in the low-temperature phase and then increases significantly above TKT when the
behaviour of the density profile is no longer algebraic.

We have also shown that there is probably no logarithmic correction at the Kosterlitz–
Thouless point, since the curve of figure 7does not seem to differ significantly from a true power
law. Although not a proof, numerical evidence of that is the plot of mFBC(w) × [κ(w)]1/8 versus
κ(w) which remains constant on the whole range of values of κ(w) [36]. This observation
makes the order parameter profile with fixed boundary conditions a very convenient quantity for

10 One should nevertheless mention that this does not lead to a precise determination of TKT, since at kBT /J =
0.9, for example, the master curve is hardly distinguishable from a straight line.
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Figure 7. Monte Carlo simulations of the 2d XY model inside a square 100 × 100 spins
(106 MCS/spin after cancellation of 106 for thermalization, cluster update algorithm). The figure
shows the rescaled order parameter density against the rescaled distance on a log–log scale at
different temperatures below the Kosterlitz–Thouless transition temperature and slightly above.

the determination of the bulk correlation function exponent, since it displays a pure algebraic
decay up to the Kosterlitz–Thouless transition point11.

Fitting the curves of figure 7 to power laws leads to the values of the scaling dimension
ησ (T ) in the whole critical region T � TKT as shown in figure 10 in the conclusion. The data
are also reported in table 1. The accuracy is much better than in the case of the two-point
correlation functions.

3.3.2. Scaling of mFfBC(w). For this last choice of boundary conditions, hereafter referred to
as ‘fixed–free BC’ (and denoted by FfBC), the open square has half of its boundaries which are
left free while the other half are kept fixed. This is illustrated in figure 8 where the averaged
profile is also shown at two different temperatures. The shape of the plotted surface helps in
understanding the BC.

In the previous section, we reported some evidence that the logarithmic corrections at the
KT point are negligible for the order parameter profile with fixed BC. Assuming that there
will be no substantial difference for fixed–free BC, we perform a fit of ln mFfBC(w) against
the two-dimensional linear expression, const− 1

2ησ (T ) ln κ(w)+ 1
2η‖(T ) ln µ(w), as expected

from equation (34). The value obtained for the bulk correlation function exponent ησ (T )

(already known precisely from the previous section) will be a test for the reliability of the fit.
The simulations are performed at several temperatures, up to kBTKT/J � 0.893. The three
parameters linear fits lead to correct determinations of both exponents (we studied different
system sizes ranging between L = 48 and L = 100 and even 200 at the KT point). The value
of the bulk exponent is in good agreement with the determination which follows from the fit

11 The decay exponent, if not fixed, but determined numerically, leads to a quite good result (for example, for a size
L = 100, we get ησ (TKT) = 0.250(28)).
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Figure 8. Monte Carlo simulations of the 2d XY model inside a square 48 × 48 spins with mixed
fixed–free boundary conditions below the Kosterlitz–Thouless transition temperature. Typical
configuration on the left and average over 106 MCS/spin after cancellation of 106 for thermalization
(cluster update algorithm) at kBT /J = 0.488 and kBT /J = 0.915 on the right.

of the profile with fixed BC, and the surface exponent also fits nicely to the values deduced
from the two-point correlation function with free BC.

3.3.3. Scaling of �εFBC−fBC(w). We concentrated mainly up to now on the magnetic
properties. The thermal exponents are also interesting quantities which characterize a critical
point. In the case of the XY model, the temperature is a marginal field, responsible for the
existence of a critical line in the whole low-temperature phase. It thus implies a thermal scaling
exponent xε = d − yt = 2 which ensures a vanishing RG eigenvalue yt = 0 (up to TKT where
it is consistent with the essential singularity of ξ above the KT point). The energy–energy
correlation function should thus decay algebraically as〈

εz1εz2

〉 ∼ |z1 − z2|−ηε (50)

with ηε(T ) = 2xε = 4,∀T < TKT.
We check qualitatively this expression of the energy–energy correlations from the

behaviour of the energy density profile. The energy density at site w is, for example, defined
as the average value of the energies of the four links reaching w:

εw = 1

2d

∑
µ̂

(σw−µ̂ · σw + σw · σw+µ̂). (51)

In comparison with the magnetization profile, a difficulty occurs due to the existence
of a regular contribution in the energy density. This term cancels after a suitable difference
between profiles obtained with different BC. For that reason, we made two different series of
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Figure 9. Monte Carlo simulations of the 2d XY model inside a square 100 × 100 spins (106

MCS/spin after cancellation of 107 for thermalization, cluster update algorithm). The main figure
shows the local energy density versus the rescaled variable κ(w) at different temperatures and for
different BC. The inset is a log–log plot of the difference �e(w) as explained in the text.

simulations with free (fBC) and fixed (FBC) boundary conditions. From the latter simulations
we had already extracted the singular behaviour of the magnetization profile since there is no
regular contribution in the scale-invariant phase,

mFBC(z) = Am(T )y−ησ (T )/2 (52)

where Am(T ) is a non-universal ‘critical’ amplitude12 which depends on the temperature.
On the other hand, the two series of simulations are necessary in order to extract

the singularity associated with the energy density which contains a non-universal regular
contribution 〈ε0(T )〉 which depends on T and a singular contribution:

〈εz〉FBC = 〈ε0(T )〉 + BFBC(T )y−ηε(T )/2 (53)

〈εz〉fBC = 〈ε0(T )〉 + BfBC(T )y−ηε(T )/2. (54)

This is clearly illustrated in figure 9 where convergence towards the same temperature-
dependent constant 〈ε0(T )〉 is shown. We also observe that the amplitudes of the singular
terms have opposite signs. Therefore, a simple difference of the quantities measured in the
square geometry,

�e(w) = 〈εw〉FBC − 〈εw〉fBC ∼ �B × [κ(w)]−
1
2 ηε(T ) (55)

leads to the value of the thermal scaling dimension ηε(T ).
The inset in figure 9 shows a log–log plot of the difference �e(w) versus κ(w) at three

temperatures below TKT. Due to strong fluctuations, the data scatter around straight lines
which represent the theoretical slopes [κ(w)]−2. This figure, though far from being definitely
conclusive, confirms that the exponent of the decay of energy–energy correlations keeps a
12 Here we use the term ‘critical’, since the whole low-temperature phase is considered as critical.
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Figure 10. Bulk and surface correlation decay exponents of the 2d XY model as a function of the
temperature. The values follow from independent linear fits of the magnetization profiles with FBC

(circles) or FfBC (triangles).

constant value ηε(T ) = 4 in the low-temperature phase of the XY model. At the KT transition,
this value was confirmed very accurately by Blöte and Nienhuis [56].

4. Discussion

The different determinations of the bulk and surface correlation function scaling dimensions
reported in this paper are mutually consistent. These exponents are obtained using completely
independent techniques, from four independent series of simulations (the boundary conditions,
but also the quantities which are computed are different). The fits themselves are different,
since these quantities obey specific functional expressions.

The exponents are plotted in figure 10 for different system sizes. Our results (for a few
values of the temperature) are also given in table 1. In columns a, b and c we present the
bulk exponent. Columns d and e give the surface exponent. The error bars (for the values
resulting from the fits of the magnetization profiles, columns b, c, d) correspond to one
standard deviation. We have to mention here that these error bars should be considered with
some care for at least two reasons. A first reason is that we did not make any extrapolation to
the thermodynamic limit, because the results at a few sizes already seem very stable as can be
observed in figure 10. Although we did not analyse the size effects systematically, we believe
that this is not the most important contribution to the error. A second reason has more drastic
consequences. This is the influence of the fitting window. When the range of fit is varied in a
reasonable scale in the ‘large κ’ regime, it usually produces a small deviation in the resulting
exponent. For example, fitting a power law ∼[κ(w)]x in the window 0.10 < κ(w) < 1 or
0.25 < κ(w) < 1 leads to compatible results within the error bars (in this example at the
KT transition, we get respectively ησ = 0.260(18) and 0.250(28)). If the window range
is changed significantly, on the other hand, we no longer control the stability of the results,
since the errors increase considerably (for example, ησ = 0.247(92) for 0.50 < κ(w) < 1).
Because of these constraints, we believe that the values of the exponents that we measure are
reliable, but the errors are only rough estimates.
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The weaker result of the paper probably comes from the correlation function with periodic
boundary conditions which is fitted to an approximate functional expression. There are also
logarithmic corrections in this case and an unavoidable scattering of the data which prevent a
fit in the interesting asymptotic region. The consequence is a bulk exponent which is a priori
obtained with a poor level of confidence, and for this reason we decided to avoid any error
bar in column a of table 1. It is amazing to observe that in spite of these restrictions, these
results do indeed agree with the most refined values deduced from the magnetization density
profile with fixed boundary conditions (see column b in table 1). Another consequence of our
approach is again the a priori weak level of confidence of the surface exponent deduced from
the correlations in the open system (column e in the table), since we use the bulk values from
column a as input parameters for this latter fit. The surface exponent in fact fits correctly
the most refined values deduced from the magnetization density profile with mixed fixed–free
boundary conditions (column d). Obviously, the stronger results come from the magnetization
profile analyses. We believe also that another result of interest is the confirmation that the
functional expressions derived in section 2 are valid and are in fact very efficient for the
numerical investigation of critical properties of two-dimensional systems. Such applications
of conformal mappings are, of course, well known in the case of strip geometries with, e.g.,
the celebrated correlation length–amplitude-exponent relation [65].

Let us now briefly discuss the results. In the low-temperature limit, one knows that
the spin-wave description captures the essential of the physics of the problem. From this
limit, the linear behaviour of the bulk exponent with the temperature, ησ (T ) = kBT /2πJ , is
easily recovered. It is, of course, reasonable to expect that the low-temperature limit of the
surface exponent can also be recovered by the spin-wave approximation (see the appendix).
Indeed, the surface properties of the Gaussian model at the ordinary transition were studied
by Cardy [39]. They describe the low-temperature regime of the XY model. The surface–bulk
correlation function exhibits an algebraic decay

〈cos(θ0 − θr)〉UHP �
(πr

a

)−1/πK

(56)

and the corresponding surface exponent is thus given in the spin-wave approximation by the
linear behaviour

η‖(T ) = kBT

πJ
T → 0. (57)

This result is simply twice the bulk value, η‖(T ) = 2ησ (T ). This relation fits the numerical
data at low temperature as shown in figure 10 or in the table.

At the KT transition, the bulk exponent is fully coherent with the result of Kosterlitz and
Thouless RG analysis ησ (TKT) = 1/4. For the surface, the value η‖(TKT) � 0.54 is close to
the known result 1

2 [39], a value which cannot be excluded from our analysis (though out of the
error bar), since the uncertainties that we quote are only indications. It is also coherent with the
surface exponent obtained at the KT point of the quantum Ashkin–Teller chain (ε = −2−1/2

in [66]), η‖(TKT) = 2π−1 arccos(−ε) = 1/2. This value is furthermore in agreement with
the relation η‖(T ) = 2ησ (T ), provided that it is valid up to the KT point. This relation was
established in the spin-wave approach, and to extend it to the vortex-dominated regime, closer
to TKT, we note that the effect of vortices (when T → T −

KT) when treated in the Coulomb gas
approach [13, 15] is only to increase the effective temperature in the spin-wave approximation,
hence to enhance the decay of the correlations. Like η‖(T ) = 2ησ (T ) = kBT /πJ is correct
in the spin-wave treatment, the relation η‖(Teff) = 2ησ (Teff) = kBTeff/πJ should hold in the
whole critical phase, with a shift in temperature which depends on the vortice interactions,

kBTeff = kBT − 1

2
π2

∑
|r|>a

r2〈q(0)q(r)〉 (58)
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Figure 11. Square root behaviour of the bulk and surface correlation function exponents as the
Kosterlitz–Thouless point is approached.

where 〈q(0)q(r)〉 are the vortex intensity correlations (which are negative in the neutral low-
temperature phase). It is thus reasonable to expect that the relation η‖(T ) = 2ησ (T ) is exact
for the whole critical phase of the model. It can be checked that the numerical values in
table 1 support this expression.

The approach of the KT point, where the temperature dependence of the bulk correlation
function exponent is known, is also interesting. From the numerical data, ησ (T ) can be
expanded close to the KT point T → T −

KT, showing a leading square root behaviour [14, 23] as
illustrated in figure 11. The same behaviour is obtained for the surface exponent. One should
nevertheless mention here that the plot of

(
ησ (T ) − 1

4

)2
or

(
η‖(T ) − 1

2

)2
against T seems to

indicate a slightly lower value of TKT than 0.893. A clarification of that point is beyond the
scope of this paper, since it would definitely require simulations of really large systems in
order to rule out the possibility of finite-size dependence of the measured quantities.

Eventually, we mention that our analysis of the energy density profiles is compatible with
the marginality condition of the temperature in the low-temperature phase of the XY model.
This condition, equivalent to the continuous variation of the magnetic scaling dimension,
indeed implies that the thermal scaling dimension keeps a constant value xε = 2 which does
not depend on the temperature, and this value enables the numerical data to fitted reasonably.

In this paper, we performed an accurate study of the low-temperature phase of the 2d XY
model using efficient techniques, based on a conformal mapping of the correlation functions
and density profiles. At the Kosterlitz–Thouless transition, the results are in agreement with
the general picture of the RG analysis and the critical exponents describing the algebraic decay
of the correlations in the low-temperature phase are measured.
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Appendix

In this appendix, we recall the surface–bulk correlation function obtained in the spin-wave
approximation. The correlation function between a spin close to the surface (σ0) and another
spin far into the bulk (σz) is defined according to 〈σ0 · σz〉UHP = 〈cos(θ0 − θz)〉UHP, where the
subscript UHP means here that Im z � 0. We use a standard notation r for z from now on. As
is well known, in the harmonic approximation, the Hamiltonian becomes quadratic and the
thermal average leads to the Gaussian model which implies that

〈cos(θ0 − θr)〉UHP = exp
(− 1

2 〈(θ0 − θr)
2〉UHP

)
. (A.1)

In Fourier space, θr = N−1/2 ∑
q exp(−iqr)θq (N = L2), the Hamiltonian becomes (the spins

are located on the vertices of a square lattice of spacing unit a)13

− H

kBT
� const − 1

4
K

∑
q

2(2 − cos aqx − cos aqy)|θq|2

� const − 1

4
K

∑
q

a2|q|2|θq|2 (A.2)

and leads to a partition function

Zβ =
∏

q

(
4π

Ka2|q|2
)1/2

. (A.3)

Hence, the quadratic fluctuations of the Fourier amplitudes are linear in T,

〈|θq|2〉 = 2

Ka2|q|2 (A.4)

and the integral
(
N−1

∑
q → a2

4π2

∫
dq

)
〈(θ0 − θr)

2〉 = a2

2π2

∫
dq(1 − cos qr)〈|θq|2〉 (A.5)

is easily evaluated, leading to

〈(θ0 − θr)
2〉 = 1

π2K

∫ 2π

0

dq

q

∫ π

0
dϕ(1 − cos qr cos ϕ)

= 1

πK

∫ πr/a

0

1 − J0(u)

u
du

� 1

πK
ln

πr

a
(A.6)

where a cutoff ∼π/a was introduced. The surface–bulk correlation function follows:

〈cos(θ0 − θr)〉UHP �
(πr

a

)−1/πK

(A.7)

and the corresponding surface exponent is thus given in the spin-wave approximation by the
linear behaviour

η‖(T ) = kBT

πJ
T → 0. (A.8)

13 In contrast with the standard calculation in the whole plane, an extra factor of 1/2 appears from the orthogonality
relation in the UHP.
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